

Αντιμυκητιακή προφύλαξη

Diagram of the various risk factors affecting the primary host condition

INNATE IMMU	NE STATUS		RELATED TO
Toll-like receptors po C-type lectin recepto Mannose binding lec Plasminogen polymo Other polymorphisms	r polymoprphism tin polymorphism rphism		Neutropenia Progressive cancer ft versus host disease cancer chemotherapy Steroids,
	PRIMARY HOS Hematological Allogeneic hemat cell transpla	malignancy opoietic stem	T-cell suppressors
Climate Construction work	Solid organ tran Solid tu Other immun	nsplantation mor	Diabetes Iron overload
Place of residence Tobacco or cannabis use Contaminated food or spices Pets, potted plants, and gardening No HEPA filtered air during hospitalisation		Pri	Trauma, burns Renal impairment Metabolic acidosis or respiratory disease
ENVIRONMENT	AL FACTORS	OTHER	FACTORS

Herbrecht et al. Ann. N.Y. Acad. Sci. 1272 (2012) 23–30

Risk of invasive aspergillosis based on the primary host factor

Herbrecht et al. Ann. N.Y. Acad. Sci. 1272 (2012) 23-30

Εκτιμώμενη ετήσια επίπτωση συστηματικών μυκητιακών λοιμώξεων

Είδος μυκητίασης	Περιπτώσεις/έτος	Εκτιμώμενη θνητότητα (% των προσβεβλημένων)
Cryptococcosis	>1.000.000	20-70%
Candidiasis	>400.000	10-75%
Invasive Aspergillosis	>200.000	30-95%
CPA	>1.200.000	
ABPA	4.800.000	
SAFS	10.000.000	
Pneumocystis pneumonia	>400.000	20-80%
Mucormycosis	>11.000	30-90%

Identified main underlying conditions predisposing to invasive aspergillosis

Herbrecht et al. Ann. N.Y. Acad. Sci. 1272 (2012) 23-30

Underlying conditions	Incidence (%)	Identified specific patient and treatment-related risk factors
Allogeneic hematopoietic stem cells	2.7–23	Delayed neutrophil engraftment, secondary neutropenia, lymphocytopenia, monocytopenia, cord blood, T cell-depleted or CD34-selected stem cell products, unrelated or mismatched donor graft, acute or chronic graft versus host disease, corticosteroids, CMV disease, respiratory virus infections, renal failure, reduced-intensity conditioning regimen, purine analogs or monoclonal antibodies, history of invasive aspergillosis, iron overload, advanced age, donor toll-like receptor polymorphism
Autologous hematopoietic stem cells	0.5–6	Neutropenia, purine analogs or monoclonal antibodies, lymphoproliferative malignancy as indication for transplantation
Transplant Lung or heart- lung	3–26	Airways colonization, single lung transplant, cystic fibrosis as indication for transplantation, rejection and increased immunosuppression, obliterative bronchitis, lymphocytopenia, corticosteroids, CMV disease, renal dysfunction, hypogammaglobulinemia, advanced age

Identified main underlying conditions predisposing to invasive aspergillosis

Herbrecht et al. Ann. N.Y. Acad. Sci. 1272 (2012) 23-30

Heart	0.4–15	Airways colonization, reoperation, Lymphocytopenia, corticosteroids, CMV disease, post-transplant hemodialysis, advanced age
Liver Transplant	0.7–10	Retransplantation, smoking, CMV disease, dialysis requirement, fulminant hepatic failure as indication for transplantation
Pancreas	1.1–2.9	None identified
Kidney	0.2–1	Graft failure requiring prolonged hemodialysis, lymphocytopenia, corticosteroids, sirolimus ± mycophenolate mofetil, advanced age
Small bowell	0–11	Lymphocytopenia, corticosteroids, CMV disease, renal dysfunction, advanced age

Frequency of major fungal infections in organ transplant recipients

	Incidence of		
	invasive fungal	Infections due	Infections due
	infections*	to Aspergillus	to Candida
Renal	1.4 - 14%	0 - 10%	2.0 - 100%
Heart	5 - 21%	77 - 91%	8 - 23%
Liver	7 - 42%	9 - 34%	35 -91%
Lung and heart			
-lung	15 - 35%	25 - 50%	43 - 72%
Small-bowel	40 - 59%	0 - 3.6%	80 - 100%
Pancreas	18 - 38%	0 - 3%	97 - 100%

Identified main underlying conditions predisposing to invasive aspergillosis

Acute myeloid leukemia	5–24	Neutropenia, monocytopenia, purine analogs or monoclonal antibodies, advanced age, iron overload, influenza H1N1 virus infection, lack of response to induction chemotherapy
Acute lymphoblastic leukemia	3.8	Lymphocytopenia, corticosteroids, advanced age
Multiple myeloma	2–3	Neutropenia, corticosteroids, advanced age
Non-Hodgkin's lymphoma	0.8	Corticosteroids, purine analogs or monoclonal antibodies, advanced age
Hodgkin's disease	0.4	None identified
Lung cancer	2.6	Stage IV disease, corticosteroids
AIDS	0–12	<50 CD4+ cells/L, neutropenia, corticosteroids
Chronic granulomatous disease	20–40	None identified
Burns	1–7	Body surface area burn, full thickness burn, length of hospital stay, older age, inhalation injuries

Identified main underlying conditions predisposing to invasive aspergillosis

Herbrecht et al. Ann. N.Y. Acad. Sci. 1272 (2012) 23-30

Underlying conditions	Incidence (%)	Identified specific patient and treatment-related risk factors
Chronic obstructive pulmonary disease with acute exacerbation	1.9	Systemic or inhaled corticosteroids, admission to the intensive-care unit, chronic heart failure, antibiotic treatment received in the three months prior to admission, airways colonization
Systemic lupus erythematous	0.5–2.1	Corticosteroids, other immunosuppressive drugs
Liver failure*	5.4	Multiple antibiotic use, frequent invasive procedures
Severe combined immunodeficiency	3.5	None identified

*Hepatitis B virus-related liver failure

Phases of opportunistic infections among allogeneic HCT recipients

Biol Blood Marrow Transplant. 2009 Oct;15(10):1143-238.

Blood Reviews 31 (2017) 17-29

REVIEW

Risk stratification for invasive fungal infections in patients with hematological malignancies: SEIFEM recommendations

Livio Pagano ^{a,*}, Alessandro Busca ^b, Anna Candoni ^c, Chiara Cattaneo ^d, Simone Cesaro ^e, Rosa Fanci ^f,

Risk factors for IFIs in AML according to Leukemia, Host, Treatment and Fungal Exposure

Leukemia related	Host related	Treatment related factors	Fungal exposure
Lower Probability of CR (Adverse	Age >65 yrs	Expected treatment related severe	Rooms without HEPA filtration;
Cytogenetic/gene mutation profiles;		and prolonged neutropenia	Building constructions or renovations/
WBC > 50.000/µL; Secondary AML		(ANC <100/µL for >10 d)	recent house renovation
Baseline neutropenia with ANC < 500/jd. for>7 d;	Organ dysfunction with High comorbidity	Highly mucotoxic regimen	Documented Airway Colonization By
MDS-related phagocytic dysfunction.	index or Poor Performance status (22)		Aspergillus species
Leukemia status: relapse-refractory > first	Chronic obstructive pulmunary disease.	Mucositis grade ≥3 for >7 days,	Prior Aspergillosis
induction > consolidation	Active smoking	especially if involving lower gut.	
Persistance of day 15 bone marrow blast cells. No CR by end of induction phase	Immunity polymorphism Pharmacogenomics of antineoplastic drugs		Multisite colonization by Candida species. Jobs with high exposure (farming, gardening, contruction work)

CR = Complete Remission; ANC = absolute Neutrophils count; WBC = White Blood cells.

Bone Marrow Transplantation (2018) 53:1304–1310 https://doi.org/10.1038/s41409-018-0161-1

ARTICLE

Hematopoietic cell transplantation comorbidity index and risk of developing invasive fungal infections after allografting

Alessandro Busca¹ · Roberto Passera² · Enrico Maffini^{1,3} · Moreno Festuccia^{1,3} · Lucia Brunello^{1,3} · Chiara Maria Dellacasa¹ · Semra Aydin⁴ · Chiara Frairia⁴ · Sara Manetta^{1,4} · Sara Butera^{1,3} · Giorgia Iovino^{1,3} · Luisa Giaccone^{1,3} · Mohamed Sorror⁵ · Rainer Storb⁵ · Francesco Giuseppe De Rosa⁶ · Benedetto Bruno^{1,3}

Possible dynamic risk stratification. L. Pagano et al. / Blood Reviews 31 (2017) 17–29

Genetic stratification of risk of IFIs

The future : Predictive markers for *Aspergillus* infection?

Bochud PY et al, NEJM 2008

- TLR4 haplotypes in unrelated donors are associated with an increased risk of IA among recipients of allogeneic hematopoietic-cell transplants
- Polymorphisms in genes encoding IL-1, IL-10, TNF r2,

Seo, BMT 2005; Kesh Ann N Y Acad Sci 2005; Sainz Immunol lett 2007; Sainz Human Immunol 2007; Vaid Clin Chem Lab Med 2007; Sainz J Clin Immunol 2008

Προφύλαξη σε ποιούς ασθενείς ? Ποιο αντιμυκητιακό? Χρόνος έναρξης και για πόσο? Πως μπορούμε να κάνουμε διαβάθμιση του κινδύνου? Νέοι παράγοντες κινδύνου για συστηματικές μυκητιάσεις ή προγνωστικοί παράγοντες επιβίωσης? Εκτίμηση κινδύνου/οφέλους?

Εμπύρετος ουδετεροπενία, HSCT Όταν η ανασφάλεια και ο φόβος κυριαρχούν....

Systemic Antifungal Prophylaxis After Hematopoietic Stem Cell Transplantation: A Meta-Analysis

Panayiotis D. Ziakas, MD, PhD^{1,2}; Irene S. Kourbeti, MD, PhD^{1,2}; and Eleftherios Mylonakis, MD, PhD, FIDSA^{1,2}

- 20 studies including 4823 patients receiving HSCT. Overall, the risk for IFI while on prophylaxis was 5.1%.
- The risk of IFI, systemic candidiasis and the need for empiric antifungal treatment was significantly reduced in patients receiving fluconazole compared with patients receiving placebo.
- Itraconazole was more effective than fluconazole for the prevention of aspergillosis at the expense of more frequent withdrawals. Micafungin was marginally more effective than fluconazole for the prevention of mold infections and IA and reducing the need for empiric antifungal therapy.
- Voriconazole showed marginally significant effects compared with fluconazole regarding IA and the need for empiric treatment.

Newer Antifungal Agents for Fungal Infection Prevention During Hematopoietic Cell Transplantation: A Meta-Analysis

S.-X. Xu, J.-L. Shen, X.-F. Tang, and B. Feng

Transplantation Proceedings, 45, 407-414 (2013)

17 studies including 5122 patients. The new mold-active agents, **posaconazole**, **voriconazole**, **and micafungin** have reduced the incidence of IFI compared to fluconazole and itraconazole;

in addition, posaconazole and voriconazole have reduced transplant-related mortality significantly.

RESEARCH ARTICLE

Open Access

Systematic review and mixed treatment comparison meta-analysis of randomized clinical trials of primary oral antifungal prophylaxis in allogeneic hematopoietic cell transplant recipients

Eric J Bow^{1*}, David J Vanness², Monica Slavin³, Catherine Cordonnier⁴, Oliver A Cornely⁵, David I Marks⁶,

- Five eligible RCTs, randomizing 2147 patients in total, were included.
- Randomized controlled trials (RCTs) of fluconazole, itraconazole, posaconazole, and voriconazole for primary antifungal prophylaxis
- posaconazole, voriconazole reduced the risk of proven/probable IFI compared to fluconazole and itraconazole.
- **Conclusion**: As expected, mould-active azoles prevented IFIs, particularly invasive aspergillosis, more effectively than fluconazole in alloHCT recipients. The paucity of comparative efficacy data suggests that other factors such as long-term tolerability, availability of intravenous formulations, local IFI epidemiology, and drug costs may need to form the basis for selection among the mould-active azoles

Οξεία μυελογενής λευχαιμία –συστηματικές μυκητιάσεις

- Πρόσφατη διαπίστωση ότι η ύπαρξη παραγόντων κινδύνου από την εισαγωγή, όπως ΧΑΠ, επαγγελματική έκθεση, ενασχόληση με χώρους με φορτίο μυκήτων, απουσία θαλάμων ΗΕΡΑ, λοίμωξη με H1N1, μη ανταπόκριση σε θεραπεία "induction" αυξάνει τον κίνδυνο για συστηματικές μυκητιάσεις (1,2).
- Επιπρόσθετοι παράγοντες κινδύνου: μεγάλη ηλικία, πτωχή πρόγνωση ύφεσης νόσου για λόγους κυτταρογενετικής, υποτροπή κακοήθειας, παρουσία πολλαπλών baseline συννοσηροτήτων ή κακό " performance status".
- Επιδημιολογική αλλαγή παγκόσμια με επικράτηση υφομυκήτων με την εισαγωγή της προφύλαξης με φλουκαναζόλη από τις αρχές του 1990. O Aspergillus είναι ο κυρίαρχος μύκητας στην Ευρώπη με επίπτωση της διηθητικής Ασπεργίλλωσης σε ΟΜΛ σε ποσοστό 5% - 24%, ενώ η καντινταιμία σε 2% (3).
- Λόγω των ποσοστών συστήνονται μέτρα πρόληψης. Εκτός της αποφυγής των έργων οικοδομικών ανακατασκευών και φυτών, χώματος, πιπεριού και θαλάμων με ΗΕΡΑ, η πρωτογενής προφύλαξη συστήνεται και θεωρείται εδραιωμένη πρακτική σε πολλά Ευρωπαϊκά αιματολογικά κέντρα.
- Αν και η συγχορήγηση ανθρακυκλινών (doxorubicin, daunorubicin and idarubicin) και αζολών δεν αντενδείκνυται, οι αζόλες αναστέλλουν τους "efflux transporters" και μπορούν να μεταβάλλουν την κινητική των ανθρακυκλινών (4). Συστήνεται μία περίοδος "washout" 24 ωρών πριν τη χορήγηση προφύλαξης με αζόλη.

^{1.} Caira M, et al. Haematologica 2015; 100: 284–92.

^{2.} Herbrecht R, et al. Ann N Y Acad Sci 2012; 1272:23-30.

^{3.} Cornely OA, et al. Clin Infect Dis 2015; 61: 324–31.

^{4.} Lempers VJ, et al. Antimicrob Agents Chemother 2016; 60: 3372-9.

Overall survival in patients receiving azacitidine (n 55) or conventional care regimens (CCR; n 58) *Fenaux et al. J Clin Oncol 2010;28:562-569* Reduced GI toxicity, less severe neutropenia=fewer fungal infections? Antifungal prophylaxis needed?

Diagrounis, Thurspy and Prophylicats of Parigal Dia

Original article

Invasive fungal infections in AML/MDS patients treated with azacitidine: a risk worth considering antifungal prophylaxis?

Helena Pomares, Montserrat Arnan, Isabel Sánchez-Ortega, Anna Sureda and Rafael F. Duarte Department of Neematology, Circlein Institute of Oncology – Houstal Duran (Reynal), Biamedical Research Institute of Belledge Milledl, Bioceluna, Span

- Retrospective analysis. Incidence of IFI according to EORTC-MSG criteria in 121 consecutive AML/MDS patients receiving 948 azacitidine courses (median 5, range 1–43) between June 2007 and June 2015. Four cases of IFI (two possible, one probable aspergillosis and one proven candidemia) occurred in this series.
- The incidence rate of proven/probable IFI was 0.21% per treatment cycle and 1.6% per patient treated for the whole series, and 0.73% per treatment cycle and 4.1% per patient treated in those with severe neutropenia. Two patients died from IFI, leading to an IFI-attributable mortality rate of 1.65% per patient and 0.21% per treatment cycle.
- The numbers needed to treat with prophylaxis to prevent one case of IFI are 238 azacitidine cycles or **30 patients** throughout their whole treatment course, and 137 azacitidine cycles or 24 patients among those with severe neutropenia.
- AML/MDS patients treated with azacitidine, including those with severe prolonged neutropenia, have a very low risk of IFI which does not justify the use of antifungal prophylaxis.

www.nature.com/bmt

REVIEW

npg

Supportive care in severe and very severe aplastic anemia

B Höchsmann¹, A Moicean², A Risitano³, P Ljungman⁴ and H Schrezenmeier¹ for the EBMT Working Party on Aplastic Anemia

- In our opinion, prophylactic antifungals should be used in general for patients with very severe AA.
- Voriconazole or posaconazole appear to be more effective than fluconazole, as they have activity against *Aspergillus* and also some other mold species.
- Antifungal prophylaxis should also be considered during the first months after antithymocyte globulin (ATG) therapy and after SCT as long as neutropenia and/or lymphopenia is present.

Robenshtok E, et al. Antifungal prophylaxis in cancer patients after chemotherapy or hematopoietic stem-cell transplantation: systematic review and meta-analysis. J Clin Oncol 2007; 25: 5471–5489.

ΟΛΛ

- Έχει αναφερθεί ποσοστό συστηματικών μυκητιάσεων στο 6.5% στην αναδρομική μελέτη SEIFEM-2004 με 1173 ενήλικες ασθενείς υπό θεραπεία για ΟΛΛ, με τη διηθητική ασπεργίλλωση και καντιντίαση να είναι οι συχνότερες*
 (1)
- ΟΛΛ Philadelphia+ που λαμβάνουν αναστολείς της τυροσινικής κινάσης (imatinib, dasatinib, nilotinib, and bosutinib), ως μέρος της θεραπείας γαίνεται να έχουν χαμηλό κίνδυνο για διηθητικές μυκητιάσεις (3–5%)
- Δεν υπάρχει αποδεδειγμένο standard of care
- Το European Working Group for Adult ALL (EWALL) τοποθετείται ενάντια στη χορήγηση νεοτέρων αζολών, λόγω της δυνητικής νευροτοξικότητας σε συνδυασμό με Vinca αλκαλοειδή.
- Απουσία δεδομένων αποτελεσματικότητας και ασφάλειας, προσεκτική χρήση προφύλαξης με fluconazole για ζυμομύκητες μπορεί να συσταθεί (C-III).

**Pagano L, et al. Haematologica 2006; 91: 1068–75.*

Development and Applications of Prognostic Risk Models in the Management of Invasive Mold Disease

Review

Development and Applications of Prognostic Risk Models in the Management of Invasive Mold Disease

Marta Stanzani¹ and Russell E. Lewis^{2,*}

BOSCORE distribution observed 90-day cumulative incidence of IMD in the retrospective (2005–2008) development and prospective (2009–2012) validation cohorts.

Smartphone-assisted prognostic model assessments of lower-risk (**a**) and higher-risk (**b**) nonneutropenic patient.

M Stanzani and R E. Lewis. Fungi 2018, 4, 141

Impact of posaconazole prophylaxis on the 60-day cumulative incidence of IMD in patients with model predicted risk of IMD < 5% (\mathbf{a}) and > 5%

M Stanzani and R E. Lewis. Fungi 2018, 4, 141

Ιστορικοί σταθμοί στην ιστορία των αζολών

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Posaconazole vs. Fluconazole or Itraconazole Prophylaxis in Patients with Neutropenia

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLIAHED IN 1812 JANUARY 25, 2007 VOL. 356 NO. 4

Posaconazole or Fluconazole for Prophylaxis in Severe Graft-versus-Host Disease

Andrew J. Ullmann, M.D., Jeffrey H. Lipton, M.D., David H. Vesole, M.D., Ph.D., Pranatharthi Chandrasekar, M.D., Amelia Langston, M.D., Stefano R. Tarantolo, M.D., Hildegard Greinix, M.D., Wellington Morais de Azevedo, M.D., Ph.D., Vijay Reddy, M.D., Navdeep Boparai, M.S., Lisa Pedicone, Ph.D., Hernando Patino, M.D., and Simon Durrant, M.D.*

bjh research paper

Voriconazole versus itraconazole for antifungal prophylaxis following allogeneic haematopoietic stem-cell transplantation

David I. Marks,¹ Antonio Pagliuca,² Christopher C. Kibbler,³ Axel Glasmacher,⁴ Claus-Peter Heussel,⁵ Michal Kantecki,⁶ Paul J.S. Miller,⁷ Patricia Ribaud,⁸ Haran T. Schlamm,⁹ Carlos Solano¹⁰ and Gordon Cook¹¹ for the IMPROVIT Study Group^{*}

Summary

Antifungal prophylaxis for allogeneic haematopoietic stem-cell transplant (alloHCT) recipients should prevent invasive mould and yeast infections (IFIs) and be well tolerated. This prospective, randomized, open-label, multicentre study compared the efficacy and safety of voriconazole (234 patients) versus itraconazole (255 patients) in alloHCT recipients. The

Prospective study 234 pts vori, 255 itra No difference in IFIs rate Vori better tolerated

British Journal of Haematology 2011

NCCN

Prevention and Treatment of Cancer-Related Infections, Version 2.2016

Clinical Practice Guidelines in Oncology

Brenda Cooper, MD; Erik R. Dubberke, MD; Ashley Morris Engemann, PharmD, BCOP; Alison G. Freifeld, MD; John N. Greene, MD; James I. Ito, MD; Daniel R. Kaul, MD; Mark E. Lustberg, MD, PhD; Jose G. Montoya, MD; Ken Rolston, MD; Gowri Satyanarayana, MD; Brahm Segal, MD; Susan K. Seo, MD; Shmuel Shoham, MD; Randy Taplitz, MD; Jeffrey Topal, MD; John W. Wilson, MD; Karin G. Hoffmann, RN, CCM; and Courtney Smith, PhD

Overview

There is an increased risk of infection in patients with cancer that results in higher morbidity and

Prevention and Treatment of Cancer-Related Infections, Version 2.2016

OVERALL INFECTION RISK IN PATIENTS WITH CANCER [®]	DISEASE/THERAPY EXAMPLES	FEVER & NEUTROPENIA RISK (See FEV-2*)	ANTIMICROBIAL PROPHYLAXIS d.e.f.g.h.i
Low	 Standard chemotherapy regimens for most solid tumors Anticipated neutropenia less than 7 d 	Incidence low	Bacterial - None Fungal - None Viral - None unless prior HSV episode
Intermediate	 Autologous HCT Lymphoma^c Multiple myeloma^c CLL^c Purine analog therapy (ie, fludarabine, clofarabine, nelarabine, cladribine) Anticipated neutropenia 7–10 d 	Incidence usually high, significant variability may exist	Bacterial - Consider fluoroquinolone prophylaxis Fungal - Consider prophylaxis during neutropenia and for anticipated mucositis (See INF-2); consider PCP prophylaxis (See INF-5') Viral - During neutropenia and longer depending on risk (See INF-3, INF-4, INF-5)
High ^b	 Allogeneic HCT including cord blood Acute leukemia Induction Consolidation Alemtuzumab therapy GVHD treated with high-dose steroids (>20 mg daily) Anticipated neutropenia greater than 10 d 	Incidence usually high, significant variability may exist	 Bacterial - Consider fluoroquinolone prophylaxis Fungal - Consider prophylaxis during neutropenia (See INF-2); consider PCP prophylaxis (See INF-6*) Viral - During neutropenia and longer depending on risk (See INF-3, INF-4, INF-5)
NCCN Clinical Practice Guidelines in Oncology

Prevention and Treatment of Cancer-Related Infections, Version 2.2016

OVERALL	DISEASE/THERAPY EXAMPLES	ANTIFUNGAL PROPHYLAXIS ⁽¹⁾	DURATION	
INFECTION RISK IN PATIENTS WITH CANCER [®]	ALL	Consider: • Fluconazole ^m or Micafungin • Amphotericin B products ⁿ (category 2B)	Until resolution of neutropenia	
INTERMEDIATE TO HIGH	MDS (neutropenic) AML (neutropenic)	Consider: • Posaconazole ^m (category 1) • Voriconazole ^m , Fluconazole ^m , Micafungin, or Amphotericin B products ⁿ (all category 2B)		
	Autologous HCT with mucositis ¹	Consider: • Fluconazole ^m or Micafungin (both category 1)		
	Autologous HCT without mucositis	Consider no prophylaxis (category 2B)		
	Allogeneic HCT (neutropenic) See Antipneumocystis Prophylaxis (INF-6*)	Consider: • Fluconazole ^m or Micafungin (both category 1) • Voriconazole ^m , Posaconazole ^m , or Amphotericin B product ⁿ (all category 2B)	Continue during neutropenia and for at least 75 d after transplant	
	Significant GVHD ^k See Antipneumocystis Prophylaxis (INF-6*)	Consider: • Posaconazole ^m (category 1) • Voriconazole ^m , Echinocandin, Amphotericin B products ⁿ (all category 2B)	Until resolution of significant GVHD	

European guidelines for primary antifungal prophylaxis in adult haematology patients: summary of the updated recommendations from the European Conference on Infections in Leukaemia

Johan A. Maertens¹*, Corrado Girmenia², Roger J. Brüggemann³, Rafael F. Duarte⁴, Christopher C. Kibbler⁵,

- The guidelines were extended to provide recommendations for other haematological diseases besides AML and recipients of an allogeneic HSCT).
- Posaconazole remains the drug of choice when the incidence of invasive mould diseases exceeds 8%.
- For patients undergoing remission-induction chemotherapy for AML and myelodysplastic syndrome (MDS), fluconazole can still offer an alternative/part of an integrated care strategy that includes screening with biomarkers and imaging.
- Similarly, aerosolized liposomal amphotericin B combined with fluconazole can be considered for patients at high risk of invasive mould diseases but other formulations of the polyene are discouraged.
- Fluconazole is still recommended as primary prophylaxis for patients at low risk of invasive mould diseases during the pre-engraftment phase of allogeneic HSCT whereas only a moderate recommendation could be made for itraconazole, posaconazole and voriconazole for patients at high risk.
- Posaconazole is strongly recommended for preventing invasive mould disease post-engraftment but only when graft-versus-host disease (GvHD) was accompanied by other risk factors such as its severity, use of an alternative donor or when unresponsive to standard corticosteroid therapy.
- The need for primary prophylaxis for other patient groups was less clear and should be defined by the estimated risk of invasive fungal disease (IFD).

ECIL Recommendations on primary antifungal prophylaxis (JAC 2018) in adult patients with AML/MDS undergoing intensive remission-induction chemotherapy

Antifungal AGENT	Grading	Comments
Fluconazole 400mg q24	BI	Only recommended if the incidence of mould is low. Fluconazole may be part of an integrated care strategy together with a mould-directed diagnostic approach
Itraconazole oral solution 2.5mg/Kg q12h	BI	Recommended if baseline incidence of mould infections is high May be limited by drug–drug interactions or patient tolerability. It is recommended to monitor serum drug concentrations
Posaconazole oral sol 200mg q8h tb 300mg q24h loading dose 300mg q12h	AI	Recommended if baseline incidence of mould infection is high Given the increased absorption of tablets, it is likely that the need for therapeutic drug monitoring will become restricted to specific populations

ECIL Recommendations on primary antifungal prophylaxis (JAC 2018) in adult patients with AML/MDS undergoing intensive remission-induction chemotherapy			
Antifungal agent	Grading	Comments	
All Echinocandins	CII	Insufficient data on efficacy and tolerability	
Liposomal Amphotericin B	CII	Insufficient data on efficacy and tolerability	
Lipid associated Amphotericin B	CII	Insufficient data on dose, frequency and duration as well as on efficacy and tolerability	
Aerosolized liposomal Amphotericin B(10 mg twice weekly)	BI	Only when combined with oral fluconazole	
Amphotericin B deoxycholate	AII against		
Aerosolized amphotericin B deoxycholate	AII against		

Update: ECIL 5, 2013

Recommendations for allogeneic HSCT recipients (2013)

Antifungal prophylaxis*	Pre-engraftment Low risk for moulds	Pre-engraftment High risk for moulds	GvHD	
Fluconazole	A-I	A-III - against	A-III against	
Itraconazole	B-I	B-I	B-I	
Voriconazole	B-I	B-1	B-1	
Posaconazole OS/Tablet	B-II	B-II	A-I	
Micafungin	B-I	C-1	C-11	
Caspofungin /anidulafungin	No data	No data	No data	
Liposomal Amphotericin B	C-II	C-II	C-II	
Aerosolized amphotericin B plus fluconazole	C-III	B-II	No <mark>d</mark> ata	

Diagnosis and management of *Aspergillus* diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline

A.J. Ullmann^{1, 62, 63}, J.M. Aguado^{2, 62, 63}, S. Arikan-Akdagli^{3, 62, 63}, D.W. Denning^{4, 5, 6, 63},

- Patients known to be at high risk for IA **may receive** primary prophylaxis, especially patients with profound and prolonged neutropenia or with active graft-versus-host disease (GvHD)
- In patients treated for haematological diseases, prolonged severe neutropenia is the most important risk factor for the development of IA. Tcell-depleted grafts, glucocorticosteroids and other immune suppressive drugs have been identified as further **risk factors for IA in the later course** after haematopoietic stem cell transplantation (HSCT), even in nonneutropenic patients. In fact, **up to two-thirds of patients with IA diagnosed after allogeneic HSCT are not neutropenic**, and the med time of diagnosis of IA after allogeneic HSCT is **82 days** (range, 3-6542 days)

Invasive Aspergillosis in solid-organ transplant recipients: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice

Shahid Husain¹ | Jose F. Camargo² on behalf of the AST Infectious Diseases Community of Practice

Παγκόσμια κατανομή *Α. fumigatus* sp ανθεκτικών σε αζόλες

"Swabs of bulbs imported from the Netherlands and bought from a garden centre in Dublin found that the majority were cultured resistant to Voriconazole" PressReader - Irish Examiner

New antifungal agents in late stage of development

Agent	Phase	Class	Mechanism of action	Advantage	Disadvantage	Potential use
Azoles Isavuconazole	Phase IV	Azole	Inhibition of lanosterol 14α-demethylase	 Oral and IV formulation Improved safety profile Reduction in DDIs 	• Price compared to other azoles	Invasive mould disease (for example: invasive aspergillosis,
Glucan synthesi:	s inhibitors					mucormycosis)
Rezafungin (CD101)	Phase III	GSI	Inhibition of β-1,3-glucan synthesis	 Improved stability Long half-life = > front-loaded administration Safety profile Minimal interaction with CYP450 enzymes 	• No oral formulation	Broad antifungal spectrum, also activity against Candida auris and PJP.
SCY-078 (MK-3118)	Phase III	GSI (novel subclass)	Inhibition of β -1,3-glucan synthesis	 Oral and IV formulation Activity against resistant strains 		 Candida and Aspergillus spp. Scedosporium prolificans Candida auris
Polyenes	DI II	D.I.	D C ···································	• D 1		p l
Coch-AmB	Phase II	Polyenes	Pore formation by binding to ergosterol	 Broad spectrum Minimal DDIs Oral administration 		Broad spectrum (<i>Candida</i> spp., <i>Aspergillus</i> spp.,)
Orotomides	DI UT	0 11	* 1 · 1 · 1 · · · · · · · · · · · · · ·	• 0 1 UNIC 1 :		
Olorofim	Phase III	Orotomides	Inhibition of dihydroorotate dehydrogenase	 Oral and IV formulation No evidence of cross-resistance Activity against Lomentospora prolificans 	 DDIs Little or no activity against Candida spp., Mucorales spp. and Cryptococcus neoformans 	 Aspergillus spp. Scedosporium spp. (including Lomentospora prolificans)

Phase III Studies for Rezafungin

Treatment Phase 3

A Phase 3, Multicenter, Randomized, Doubleblind Study of the Efficacy and Safety of Rezafungin for Injection versus Intravenous Caspofungin Followed By Optional Oral Fluconazole Step-down in the Treatment of Subjects with Candidemia and/or Invasive Candidiasis

Prophylaxis Phase 3

A Phase 3, Multicenter, Randomized, Doubleblind, Study of the Efficacy and Safety of Rezafungin for Injection Versus the Standard Antimicrobial Regimen to Prevent Invasive Fungal Infections in Adults Undergoing Allogeneic Hematopoietic Stem Cell Transplantation

Antifungal Prophylaxis

Cost-Benefit Assessment

